How to find the integral of (2cos x+3sin x)/(1+sin x) using the integral of dx/(1+sin x)(this is give below)
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > How to find the integral of (2cos x+3sin x)/(1+sin x) using the integral of dx/(1+sin x)(this is give below)

How to find the integral of (2cos x+3sin x)/(1+sin x) using the integral of dx/(1+sin x)(this is give below)

[From: ] [author: ] [Date: 11-08-05] [Hit: ]
......
integral of dx/(1+sin x)= -2 / (tan (x/2) + 1
Thanks

-
∫ (2 cos x + 3 sin x) dx / (1 + sin x)
= ∫ [2 cos x/(1 + sin x) + 3 sin x/(1 + sin x)] dx
= ∫ [2 cos x/(1 + sin x) + 3 (1 + sin x - 1)/(1 + sin x)] dx
= ∫ [2 cos x/(1 + sin x) + 3 (1 - 1/(1 + sin x))] dx
= ∫ [2 cos x/(1 + sin x) + 3 - 3/(1 + sin x)] dx
= 2 ln |1 + sin x| + 3x - 3 * -2 / (tan(x/2) + 1) + C, using the hint above
= 2 ln |1 + sin x| + 3x + 6/(tan(x/2) + 1) + C.

I hope this helps!
1
keywords: is,this,of,find,using,give,integral,cos,below,How,dx,sin,to,the,How to find the integral of (2cos x+3sin x)/(1+sin x) using the integral of dx/(1+sin x)(this is give below)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .