Simplify each expression. Only use positive exponents.?
(27a^ 4/3) over (b^-1/2 c^5/6) all to the -1
Simplify the root
cubed root of 16x^7 y ^5 z^3
(27a^ 4/3) over (b^-1/2 c^5/6) all to the -1
Simplify the root
cubed root of 16x^7 y ^5 z^3
-
1. I am assuming that the expression is:
[(27a^(4/3))/(b^(-½)c^(5/6))]^(-1)
Use those laws of exponents to evaluate the expression.
(aⁿ)^b = a^(nb)
a^(-n) = 1/aⁿ
So we have:
(27a^(4/3))^(-1)/(b^(-½)c^(5/6))^(-1)
= (b^(-½)c^(5/6))/(27a^(4/3))
= c^(5/6)/(27a^(4/3)b^(½))
2. ∛(16x^7y^5z³)
Factor out the value in terms of cubic factor:
∛(2³*2*(x²)³*x(y)³*y²*z³)
Therefore, we obtain 2x²yz∛(2xy²)
I hope this helps!
[(27a^(4/3))/(b^(-½)c^(5/6))]^(-1)
Use those laws of exponents to evaluate the expression.
(aⁿ)^b = a^(nb)
a^(-n) = 1/aⁿ
So we have:
(27a^(4/3))^(-1)/(b^(-½)c^(5/6))^(-1)
= (b^(-½)c^(5/6))/(27a^(4/3))
= c^(5/6)/(27a^(4/3)b^(½))
2. ∛(16x^7y^5z³)
Factor out the value in terms of cubic factor:
∛(2³*2*(x²)³*x(y)³*y²*z³)
Therefore, we obtain 2x²yz∛(2xy²)
I hope this helps!