I know that there are waterproof laser pointers for scuba diving, Perfect for pointing out undersea life without disturbing the reef.
Sep. 7, 2009 — Scientists at the Naval Research Laboratory are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound. The new acoustic source has the potential to expand and improve both Naval and commercial underwater acoustic applications, including undersea communications, navigation, and acoustic imaging. Efficient conversion of light into sound can be achieved by concentrating the light sufficiently to ionize a small amount of water, which then absorbs laser energy and superheats. The result is a small explosion of steam, which can generate a 220 decibel pulse of sound. Optical properties of water can be manipulated with very intense laser light to act like a focusing lens, allowing nonlinear self-focusing (NSF) to take place.
http://www.sciencedaily.com/releases/200...
Underwater laser scanners have started to become a preferred technology for close range, high precision underwater measurement work.
The ability of these sensors to quickly obtain a complete 3D model of the environment has proven to be useful for sub sea pipeline inspection, inland pipe and tunnel inspection, offshore jacket inspection and archaeological and scientific applications. Using the digital 3D model, created by the laser scanner, engineers can accurately assess the status of an asset with more certainty and make better decisions. The traditional underwater measurement technology, sonar, is great for longer range measurements but does not provide the level of detail the laser scanner can obtain at close ranges. However, determining the optimal range to switch from one technology to the next can be challenging. This paper describes why laser scanners are range limited compared to sonar technology and presents some results from a test using a laser scanner at range. Underwater laser scanners generally use blue/green laser light as this wavelength of light has the best transmissivity through the water.
Sep. 7, 2009 — Scientists at the Naval Research Laboratory are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound. The new acoustic source has the potential to expand and improve both Naval and commercial underwater acoustic applications, including undersea communications, navigation, and acoustic imaging. Efficient conversion of light into sound can be achieved by concentrating the light sufficiently to ionize a small amount of water, which then absorbs laser energy and superheats. The result is a small explosion of steam, which can generate a 220 decibel pulse of sound. Optical properties of water can be manipulated with very intense laser light to act like a focusing lens, allowing nonlinear self-focusing (NSF) to take place.
http://www.sciencedaily.com/releases/200...
Underwater laser scanners have started to become a preferred technology for close range, high precision underwater measurement work.
The ability of these sensors to quickly obtain a complete 3D model of the environment has proven to be useful for sub sea pipeline inspection, inland pipe and tunnel inspection, offshore jacket inspection and archaeological and scientific applications. Using the digital 3D model, created by the laser scanner, engineers can accurately assess the status of an asset with more certainty and make better decisions. The traditional underwater measurement technology, sonar, is great for longer range measurements but does not provide the level of detail the laser scanner can obtain at close ranges. However, determining the optimal range to switch from one technology to the next can be challenging. This paper describes why laser scanners are range limited compared to sonar technology and presents some results from a test using a laser scanner at range. Underwater laser scanners generally use blue/green laser light as this wavelength of light has the best transmissivity through the water.
12
keywords: laser,underwater,How,could,be,useful,How could a laser be useful underwater?