Integration of Inverse Trig Functions?
Favorites|Homepage
Subscriptions | sitemap
HOME > > Integration of Inverse Trig Functions?

Integration of Inverse Trig Functions?

[From: ] [author: ] [Date: 14-03-09] [Hit: ]
............
Let INT = integral symbol

INT (2x)/(x^2+6x+13)

-
x² + 6x + 13 = (x+3)² + 4

Use trig substitution:
x + 3 = 2 tanu
dx = 2 sec²u du

∫ 2x/(x²+6x+13) dx = ∫ 2x/((x+3)²+4) dx
.......................... = ∫ 2(2 tanu − 3) / (4 tan²u+4) * 2 sec²u du
.......................... = ∫ 2(2 tanu − 3) / (4 sec²u) * 2 sec²u du
.......................... = ∫ (2 tanu − 3) du
.......................... = −2 ln |cosu| − 3u + c

Substitute back: tanu = (x+3)/2 ----> cosu = 2/√((x+3)²+2²) = 2/√(x²+6x+13)

.......................... = −2 ln| 2/√(x²+6x+13)| − 3tan⁻¹((x+3)/2) + c
.......................... = ln |(x²+6x+13)/4| − 3tan⁻¹((x+3)/2) + c
.......................... = ln (x²+6x+13) − 3tan⁻¹((x+3)/2) + (c − ln4)
.......................... = ln (x²+6x+13) − 3tan⁻¹((x+3)/2) + C

-
step by step solution:
http://symbolab.com/solver/integral-calc...

hope this helps
1
keywords: Integration,Trig,Functions,Inverse,of,Integration of Inverse Trig Functions?
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .