It says to simplify each trigonometric expression by following the indicated direction. The original problem is (sinx+cosx)(sinx+cosx)-1 divided by sixcosx. For the answer I got 3. Is this correct?
-
No. I'll go through it and I am guessing its' the clean up at the end where have problems.
I believe you started with this:
[ (sinx+cosx)(sinx+cosx)-1 ]/( sinx cosx)
=[(sin^2x + 2sinx cosx + cos^2x) -1] /( sinx cosx) using FOIL on (sinx+cosx)(sinx+cosx)
=( 2*sinx*cosx)/( sinx cosx) using sin^2x+cos^2x=1
=2
I believe you started with this:
[ (sinx+cosx)(sinx+cosx)-1 ]/( sinx cosx)
=[(sin^2x + 2sinx cosx + cos^2x) -1] /( sinx cosx) using FOIL on (sinx+cosx)(sinx+cosx)
=( 2*sinx*cosx)/( sinx cosx) using sin^2x+cos^2x=1
=2
-
Just multiply ... it is (sinx)^2 + 2sinxcosx + (cosx)^2 -1
There is a property... (sinx)^2 + (cosx)^2 = 1 ...
Then it change to 2sinxcox .... as it will be divided by sinxcosx then the answer is 2 ... Ok!
3 is not a correct answer.
There is a property... (sinx)^2 + (cosx)^2 = 1 ...
Then it change to 2sinxcox .... as it will be divided by sinxcosx then the answer is 2 ... Ok!
3 is not a correct answer.
-
( (sinx + cosx)(sinx + cosx) - 1 ) / sinxcosx
= ( sin²x + cos²x + 2sinxcosx - 1) / sinxcosx
= (1 + 2sinxcosx - 1) / sinxcosx
= 2sinxcosx / sinxcosx
= 2
= ( sin²x + cos²x + 2sinxcosx - 1) / sinxcosx
= (1 + 2sinxcosx - 1) / sinxcosx
= 2sinxcosx / sinxcosx
= 2
-
no the answer = 2 from the sinxcosx cross product
-
If it's so simple, why can't you do it?