Indefinite integration using substitution
Favorites|Homepage
Subscriptions | sitemap
HOME > > Indefinite integration using substitution

Indefinite integration using substitution

[From: ] [author: ] [Date: 13-07-04] [Hit: ]
. . . . . .......
∫ (e^√t) / √t(e^√t+1) dt

-
u = e^(sqrt(t)) + 1
du = e^sqrt(t) * dt / (2 * sqrt(t))

e^(sqrt(t)) * dt / (sqrt(t) * (e^sqrt(t) + 1)) =>
2 * du / u

Integrate

2 * ln|u| + C =>
2 * ln|1 + e^sqrt(t)| + C

-
u = e^√t + 1
du = (e^√t)/(2√t) dt

∫ (e^√t) / (√t (e^√t+1)) dt = 2 ∫ 1/(e^√t+1)) (e^√t)/(2√t) dt
. . . . . . . . . . . . . . . . . . = 2 ∫ 1/u du
. . . . . . . . . . . . . . . . . . = 2 ln(u) + C
. . . . . . . . . . . . . . . . . . = 2 ln(e^√t + 1) + C

-
∫e^(√t)/(√t)(e^(√t) + 1) dt

z = e^(√t) => 2 dz = e^(√t)/t dt

2∫dz/(z + 1) = 2ln(e^(√t) + 1) + C

-
w = e^(√t) + 1...use it to generate an ln function
1
keywords: Indefinite,using,substitution,integration,Indefinite integration using substitution
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .