find the solution of the differential equation that satisfies the given condition.
dy/dx = xysin(x)/(y+1) , y(0) = 1
dy/dx = xysin(x)/(y+1) , y(0) = 1
-
dy/dx = xysin(x)/(y+1)
dy/dx = xsin(x)[y/(y+1)]
dy/[y/(y+1)] = xsin(x)dx
dy(1 + 1/y) = xsin(x)dx
now integrate both sides:
integral(xsin(x)dx) can be done with integration by parts
http://en.wikipedia.org/wiki/Integration…
u = x
v = -cosx
integral(xsin(x)dx) = -xcosx - integral(1 * -cosx)
=
-xcosx + sinx
y + ln(|y|) + C = -xcosx + sinx
now plug in initial values x = 0, y = 1 and find c
1 + ln(1) + C = 0 + 0
C = -1
y + ln(|y|) - 1 = -xcosx + sinx
dy/dx = xsin(x)[y/(y+1)]
dy/[y/(y+1)] = xsin(x)dx
dy(1 + 1/y) = xsin(x)dx
now integrate both sides:
integral(xsin(x)dx) can be done with integration by parts
http://en.wikipedia.org/wiki/Integration…
u = x
v = -cosx
integral(xsin(x)dx) = -xcosx - integral(1 * -cosx)
=
-xcosx + sinx
y + ln(|y|) + C = -xcosx + sinx
now plug in initial values x = 0, y = 1 and find c
1 + ln(1) + C = 0 + 0
C = -1
y + ln(|y|) - 1 = -xcosx + sinx