Factor the polynomial (x-5)(x+6)^2-(x-5)^2(x+6). Your answer can be written as A(x+B)(x+C) with integers A, B,C and B
-
-
-
-
(x-5)(x+6)^2-(x-5)^2(x+6)
= (x-5)(x+6)(x+6) - (x-5)(x+6)(x-5)
= (x-5)(x+6)((x+6) - (x-5))
= (x-x+6+5)(x-5)(x+6)
= 11(x-5)(x+6)
A = 11
= (x-5)(x+6)(x+6) - (x-5)(x+6)(x-5)
= (x-5)(x+6)((x+6) - (x-5))
= (x-x+6+5)(x-5)(x+6)
= 11(x-5)(x+6)
A = 11
-
(x-5)(x+6)^2 - (x-5)^2(x+6) =
(x-5)(x+6)(x+6) - (x-5)(x-5)(x+6) =
[x+6 - x +5](x-5)(x+6)=
11(x-5)(x+6)
a = 11
(x-5)(x+6)(x+6) - (x-5)(x-5)(x+6) =
[x+6 - x +5](x-5)(x+6)=
11(x-5)(x+6)
a = 11
-
(x - 5)(x + 6)[x + 6 - (x - 5)] = (x - 5)(x + 6)
A is just 1.
A is just 1.
1
keywords: Factor,polynomial,question,Factor a polynomial question