Hi there, I have a problem:
How do I integrate:
(sec x) / (1+sin x)?
I know that (sec x) = 1/ (cos x)
therefore, I`d get 1 / [(cos x)(1+sin x)]
1/ [cos x + sinxcosx]
I know the trig. identity: sinxcosx = 1/2 (sin x)^2 but I have no clue what to do with it. I`ve been trying to substitute in my head but nothing seems to work. Am I doing something wrong? I`ve been busting my head on this problem for 30 minutes...
Any help would be very appreciated.
How do I integrate:
(sec x) / (1+sin x)?
I know that (sec x) = 1/ (cos x)
therefore, I`d get 1 / [(cos x)(1+sin x)]
1/ [cos x + sinxcosx]
I know the trig. identity: sinxcosx = 1/2 (sin x)^2 but I have no clue what to do with it. I`ve been trying to substitute in my head but nothing seems to work. Am I doing something wrong? I`ve been busting my head on this problem for 30 minutes...
Any help would be very appreciated.
-
actually, sinxcosx = (1/2)sin2x
no ^2
You are on the right track.
(secx)(1-sinx) /(1+sinx)(1-sinx)
(secx - tanx) / (1 - sin^2(x))
(secx - tanx) / (cos^2)
(secx / cos^2x) - (tanx / cos^2x)
(sec^3(x)) - (sin/cos^3(x))
Now we are ready to integrate.
Start with left hand side:
u = secx
du = secxtanx
dv = sec^2x
v = tanx
(secxtanx) - ∫ (secxtanx)tanx dx
secxtanx - ∫ secx(sec^2x - 1) dx
secx tanx - ∫ sec^3x - secx
secxtanx - ln(tanx + secx) - ∫sec^3x
but sec^3 is what we want to integrate in the first place so:
I = secxtanx - ln(tanx + secx) - I
2I = sectanx - ln(tanx + secx)
I = (1/2)(secxtanx) - (1/2)(ln(tanx+secx))
Thats for the left hand side ONLY...
lets move on to the right...
sin/cos^3
u = cosx
du = -sinsx
-∫ du / u^3
-∫ u^-3 du
(1/2)(u^-2) + C
(1/2cos^2(x)) + C
Slap it all together:
(1/2)(secxtanx) - (1/2)(ln(tanx+secx)) - (1/2cos^2(x)) + C
no ^2
You are on the right track.
(secx)(1-sinx) /(1+sinx)(1-sinx)
(secx - tanx) / (1 - sin^2(x))
(secx - tanx) / (cos^2)
(secx / cos^2x) - (tanx / cos^2x)
(sec^3(x)) - (sin/cos^3(x))
Now we are ready to integrate.
Start with left hand side:
u = secx
du = secxtanx
dv = sec^2x
v = tanx
(secxtanx) - ∫ (secxtanx)tanx dx
secxtanx - ∫ secx(sec^2x - 1) dx
secx tanx - ∫ sec^3x - secx
secxtanx - ln(tanx + secx) - ∫sec^3x
but sec^3 is what we want to integrate in the first place so:
I = secxtanx - ln(tanx + secx) - I
2I = sectanx - ln(tanx + secx)
I = (1/2)(secxtanx) - (1/2)(ln(tanx+secx))
Thats for the left hand side ONLY...
lets move on to the right...
sin/cos^3
u = cosx
du = -sinsx
-∫ du / u^3
-∫ u^-3 du
(1/2)(u^-2) + C
(1/2cos^2(x)) + C
Slap it all together:
(1/2)(secxtanx) - (1/2)(ln(tanx+secx)) - (1/2cos^2(x)) + C
-
∫ secx/(1+sinx) dx
∫ secx(1-sinx) / (1-sin²x) dx
∫ secx(1-sinx) / cos²x dx
∫ sec³x - tanx sec²x dx
= ∫ secx sec²x dx - ∫ tanx sec²x dx
put, tanx = t
sec²x dx = dt
= ∫ √(1+t²) - t dt
we know, integration of √(a²+t²) = t/2 √(a²+t²) + a²/2 ln|t+√(a²+t²)|
apply here,
= t/2 √(1+t²) + 1/2 ln|t+√(1+t²)| - t²/2 + c
where, t = tanx
= (tanx)/2 √(1+tan²x) + 1/2 ln|tanx+√(1+tan²x)| - (tan²x)/2 + c
= (secx tanx)/2 + 1/2 ln|tanx + secx| - (tan²x)/2 + c
∫ secx(1-sinx) / (1-sin²x) dx
∫ secx(1-sinx) / cos²x dx
∫ sec³x - tanx sec²x dx
= ∫ secx sec²x dx - ∫ tanx sec²x dx
put, tanx = t
sec²x dx = dt
= ∫ √(1+t²) - t dt
we know, integration of √(a²+t²) = t/2 √(a²+t²) + a²/2 ln|t+√(a²+t²)|
apply here,
= t/2 √(1+t²) + 1/2 ln|t+√(1+t²)| - t²/2 + c
where, t = tanx
= (tanx)/2 √(1+tan²x) + 1/2 ln|tanx+√(1+tan²x)| - (tan²x)/2 + c
= (secx tanx)/2 + 1/2 ln|tanx + secx| - (tan²x)/2 + c
-
∫(sec x)/(1 + sin x) dx = ∫1/(cos x)(1 + sin x) dx
= ∫(1 - sin x)/(cos x)(1 - sin² x) dx = ∫(1 - sin x)/cos^3(x) dx = ∫sec^3(x) - sin(x)/cos^3(x) dx
∫sec^3(x) dx - ∫sin(x)/cos^3(x) dx
Use integration by parts for the first one and a substitution of z = cos(x) for the second integral.
EDIT:
It became cos^3(x) because cos(x)(1 - sin² x) = cos(x)(cos²(x)) = cos^3(x)
= ∫(1 - sin x)/(cos x)(1 - sin² x) dx = ∫(1 - sin x)/cos^3(x) dx = ∫sec^3(x) - sin(x)/cos^3(x) dx
∫sec^3(x) dx - ∫sin(x)/cos^3(x) dx
Use integration by parts for the first one and a substitution of z = cos(x) for the second integral.
EDIT:
It became cos^3(x) because cos(x)(1 - sin² x) = cos(x)(cos²(x)) = cos^3(x)
-
See my pic for pure algebra and trig manipulation, no need for integrate by parts or substitution
http://p13.freep.cn/p.aspx?u=v20_p13_pho…
http://p13.freep.cn/p.aspx?u=v20_p13_pho…