Rewrite in Trigonometric form: 16-4i
Thanks in advanced!
Thanks in advanced!
-
z = 16 - 4i
z = r[cos a+i*sin a]
r^2 = 16^2+16 = 272
r = 4sqrt17
a = tan^-1 (-4/16) = -14 degrees = 346
z = 4sqrt(17)[cos (346) + i*sin(346)]
Answer c is correct
z = r[cos a+i*sin a]
r^2 = 16^2+16 = 272
r = 4sqrt17
a = tan^-1 (-4/16) = -14 degrees = 346
z = 4sqrt(17)[cos (346) + i*sin(346)]
Answer c is correct
-
z = |z|(cosΘ + isinΘ)
|z| = √(16²+4²) = √272 = 4√17
tanΘ = (-4/16)
Θ = 6.038 radians
z = 16-4i = 4√17(cos 6.038 + i sin 6.038)
|z| = √(16²+4²) = √272 = 4√17
tanΘ = (-4/16)
Θ = 6.038 radians
z = 16-4i = 4√17(cos 6.038 + i sin 6.038)
-
4i-16
-
16-4i
=16-sqrt(-16)
good luck !
=16-sqrt(-16)
good luck !