?
please show steps so I can see how to do this.
please show steps so I can see how to do this.
-
1)
cos(α-β) = cos(α)∙cos(β) + sin(α)∙sin(β)
and
cos(α+β) = cos(α)∙cos(β) - sin(α)∙sin(β)
so
cos(α-β) - cos(α+β) = (cos(α)∙cos(β) + sin(α)∙sin(β)) - (cos(α)∙cos(β) - sin(α)∙sin(β))
cos(α-β) - cos(α+β) = 2∙sin(α)∙sin(β)
2)
cot(θ) ∙ sec(θ) =
cos(θ) 1
---------- ∙ ---------- =
sin(θ) cos(θ)
1
-------- =
sin(θ)
csc θ
cos(α-β) = cos(α)∙cos(β) + sin(α)∙sin(β)
and
cos(α+β) = cos(α)∙cos(β) - sin(α)∙sin(β)
so
cos(α-β) - cos(α+β) = (cos(α)∙cos(β) + sin(α)∙sin(β)) - (cos(α)∙cos(β) - sin(α)∙sin(β))
cos(α-β) - cos(α+β) = 2∙sin(α)∙sin(β)
2)
cot(θ) ∙ sec(θ) =
cos(θ) 1
---------- ∙ ---------- =
sin(θ) cos(θ)
1
-------- =
sin(θ)
csc θ
-
cos (a - b) = cos a cos b + sin a sin b
cos (a + b) = cos a cos b - sin a sin b
Subtracting, cos (a - b) - cos (a + b) = 2 sin a sin b
cos (a + b) = cos a cos b - sin a sin b
Subtracting, cos (a - b) - cos (a + b) = 2 sin a sin b