(tanx+secx)=1/[secx-tanx]
= 1/[1/cosx-sinx/cosx]
= 1/[(1-sinx)/cosx]
= cosx/[1-sinx]*[1+sinx]/[1+sinx]
=[cosx+cosxsinx]/[1-sin^2x]
= [cosx(1+sinx)]/cos^2x
= [1+sinx]/cosx
= 1/cosx+sinx/cosx
=secx+ tanx
Does it work? Thank You.
= 1/[1/cosx-sinx/cosx]
= 1/[(1-sinx)/cosx]
= cosx/[1-sinx]*[1+sinx]/[1+sinx]
=[cosx+cosxsinx]/[1-sin^2x]
= [cosx(1+sinx)]/cos^2x
= [1+sinx]/cosx
= 1/cosx+sinx/cosx
=secx+ tanx
Does it work? Thank You.
-
Yes, that works. Congratulations!
-
:D
Report Abuse
-
Yes, it works. But it can be done way simpler.
(tanx+secx)(-tanx+secx)/(secx - tanx)
= (sec^2x - tan^2x)/(secx - tanx)
= 1/(secx - tanx)
-------
Attn: sec^2x - tan^2x = 1 since sec^2x = 1 + tan^2x
(tanx+secx)(-tanx+secx)/(secx - tanx)
= (sec^2x - tan^2x)/(secx - tanx)
= 1/(secx - tanx)
-------
Attn: sec^2x - tan^2x = 1 since sec^2x = 1 + tan^2x