Show that (tanx+secx)=1/secx-tanx
Favorites|Homepage
Subscriptions | sitemap
HOME > > Show that (tanx+secx)=1/secx-tanx

Show that (tanx+secx)=1/secx-tanx

[From: ] [author: ] [Date: 11-12-16] [Hit: ]
-Yes, that works. Congratulations!-:DReport Abuse -Yes, it works. But it can be done way simpler.......
(tanx+secx)=1/[secx-tanx]

= 1/[1/cosx-sinx/cosx]

= 1/[(1-sinx)/cosx]

= cosx/[1-sinx]*[1+sinx]/[1+sinx]

=[cosx+cosxsinx]/[1-sin^2x]

= [cosx(1+sinx)]/cos^2x

= [1+sinx]/cosx

= 1/cosx+sinx/cosx

=secx+ tanx

Does it work? Thank You.

-
Yes, that works. Congratulations!

-
:D

Report Abuse


-
Yes, it works. But it can be done way simpler.
(tanx+secx)(-tanx+secx)/(secx - tanx)
= (sec^2x - tan^2x)/(secx - tanx)
= 1/(secx - tanx)
-------
Attn: sec^2x - tan^2x = 1 since sec^2x = 1 + tan^2x
1
keywords: that,tanx,Show,secx,Show that (tanx+secx)=1/secx-tanx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .