Let,
I=∫[1/{cos^2x(1-tanx)}^2]dx
=∫[sec^2(x)/(1-tan(x))^2]dx
Put, 1-tan(x)=t
so, -sec^2(x)dx=dt
∴ I=-∫dt/t^2
=-[t^(-2+1)/(-2+1)]+C
=1/t+C
= 1/(1-tan(x))+C
I=∫[1/{cos^2x(1-tanx)}^2]dx
=∫[sec^2(x)/(1-tan(x))^2]dx
Put, 1-tan(x)=t
so, -sec^2(x)dx=dt
∴ I=-∫dt/t^2
=-[t^(-2+1)/(-2+1)]+C
=1/t+C
= 1/(1-tan(x))+C