I know the answer is .31606 , I just don't know how to get it
-
... ∫ [ x. (e^(-x²)) dx ........................ on [0,1]
= (-1/2) ∫ (e^(-x²))· (-2x) dx
= (-1/2) ∫ (e^u) du, ............... u = -x², du = (-2x) dx
= (-1/2) [ (e^u) ]
= (-1/2) [ e^(-x²) ] .................. on [0,1]
= (-1/2) [ (e^(-1)) - (e^0) ]
= (-1/2) [ (1/e) - 1 ]
= (1/2)[ 1 - (1/e) ]
= 0.3160602794 ........................................… Ans.
______________________________
= (-1/2) ∫ (e^(-x²))· (-2x) dx
= (-1/2) ∫ (e^u) du, ............... u = -x², du = (-2x) dx
= (-1/2) [ (e^u) ]
= (-1/2) [ e^(-x²) ] .................. on [0,1]
= (-1/2) [ (e^(-1)) - (e^0) ]
= (-1/2) [ (1/e) - 1 ]
= (1/2)[ 1 - (1/e) ]
= 0.3160602794 ........................................… Ans.
______________________________
-
You are Welcome, Jessica !
Report Abuse