Prove (a+bw+cw²)(a+bw²+cw) = a²+b²+c²-ab-bc-ca, where 1, w and w² are complex cube roots of unity
Favorites|Homepage
Subscriptions | sitemap
HOME > > Prove (a+bw+cw²)(a+bw²+cw) = a²+b²+c²-ab-bc-ca, where 1, w and w² are complex cube roots of unity

Prove (a+bw+cw²)(a+bw²+cw) = a²+b²+c²-ab-bc-ca, where 1, w and w² are complex cube roots of unity

[From: ] [author: ] [Date: 11-12-10] [Hit: ]
......
Since w² + w + 1 = 0 and w³ = 1,

(a + bw + cw²)(a + bw² + cw)
= a(a + bw² + cw) + bw(a + bw² + cw) + cw²(a + bw² + cw)
= (a² + abw² + acw) + (abw + b² + bcw²) + (acw² + bcw + c²)
= (a² + b² + c²) + ab(w² + w) + bc(w² + w) + ac(w² + w)
= a² + b² + c² - ab - bc - ac.

I hope this helps!
1
keywords: and,bc,of,sup,ca,bw,cw,roots,Prove,ab,complex,cube,unity,where,are,Prove (a+bw+cw²)(a+bw²+cw) = a²+b²+c²-ab-bc-ca, where 1, w and w² are complex cube roots of unity
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .