By comparing the partial sums of the following series with the carefully chosen integrals, prove that the series ∞ Σ n=2 of 1/(n ln n) diverges
whereas
∞ Σ n=2 of 1/(n (ln)^2 n) converges
Thanks a lot!
whereas
∞ Σ n=2 of 1/(n (ln)^2 n) converges
Thanks a lot!
-
Using the integral test....
∞
Σ 1/(n ln n)
n=2
Let b = ∞....
lim x---> b: ∫dx / xlnx from 2 to b
u = lnx
du = dx / x
lim x---> b: ∫du / u from 2 to b
lim x---> b: ln[ln(x)] from 2 to b
Plugging in the limits gives us....
ln(∞) - ln[ln(2)] = ∞
So the integral diverges, and because the integral diverges, the series diverges as well..
∞
Σ 1/(n (ln)^2 n)
n=2
let 'b' = ∞....
lim x---> b: ∫dx / x*ln²x from 2 to b
u = lnx
du = dx / x
lim x---> b: ∫du / u² from 2 to b
Integrating....
lim x---> b: -1/ u from 2 to b
Substituting....
lim x---> b: -1 / ln[x] from 2 to b
Plugging in the limits....
-1/ln[∞] + 1/ln[2] = 0 + 1/ln[2]]
Since the Integral converges to 1/ln[2], the Series therefore converges.
∞
Σ 1/(n ln n)
n=2
Let b = ∞....
lim x---> b: ∫dx / xlnx from 2 to b
u = lnx
du = dx / x
lim x---> b: ∫du / u from 2 to b
lim x---> b: ln[ln(x)] from 2 to b
Plugging in the limits gives us....
ln(∞) - ln[ln(2)] = ∞
So the integral diverges, and because the integral diverges, the series diverges as well..
∞
Σ 1/(n (ln)^2 n)
n=2
let 'b' = ∞....
lim x---> b: ∫dx / x*ln²x from 2 to b
u = lnx
du = dx / x
lim x---> b: ∫du / u² from 2 to b
Integrating....
lim x---> b: -1/ u from 2 to b
Substituting....
lim x---> b: -1 / ln[x] from 2 to b
Plugging in the limits....
-1/ln[∞] + 1/ln[2] = 0 + 1/ln[2]]
Since the Integral converges to 1/ln[2], the Series therefore converges.