Evaluate the integral? Integral (5 on top, 0 on bottom) of absolute value (3x-9)dx
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Evaluate the integral? Integral (5 on top, 0 on bottom) of absolute value (3x-9)dx

Evaluate the integral? Integral (5 on top, 0 on bottom) of absolute value (3x-9)dx

[From: ] [author: ] [Date: 11-11-12] [Hit: ]
|3x-9| = 3x-9,= -3x+9,INT(0,3)[ -3x+9] dx + INT (3,Hoping this helps!maybe!......
INT(0,5) [ |3x-9| dx]

With absolute value, you have to remove the bars, by redefining the function.

Since the vertex is at x=3,
|3x-9| = 3x-9, x>=3 and
= -3x+9, x<3

So split the integration into two parts:

INT(0,3)[ -3x+9] dx + INT (3,5) [3x-9] dx

Hoping this helps!

-
integ of (3x-9)dx= ((3x^2)/2)-9x+c
to evaluate it from 5 to 0 then

[((3*5^2)/2)-(9*5)]-[((3*0^2)/2)-(9*0)…


maybe!!!
1
keywords: of,top,Integral,value,integral,Evaluate,dx,bottom,absolute,the,on,Evaluate the integral? Integral (5 on top, 0 on bottom) of absolute value (3x-9)dx
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .