Using inference rules, prove the argument a^ (b→c) ^ [(a^b) →(d ∨¬c)] ^ b →d
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Using inference rules, prove the argument a^ (b→c) ^ [(a^b) →(d ∨¬c)] ^ b →d

Using inference rules, prove the argument a^ (b→c) ^ [(a^b) →(d ∨¬c)] ^ b →d

[From: ] [author: ] [Date: 11-10-24] [Hit: ]
5. c (using modus ponens on 2,6. a^b ( conjunction using 1,7.-7.......
please help! ( please try to explain when answering the question)
thanks a lot!

below is what i tried to do:
1. a
2. (b→c)
3. [(a^b) →(d ∨¬c)]
4. b
5. c (using modus ponens on 2, 4)
6. a^b ( conjunction using 1, 2)
7.

-
7. [¬(a ∧ b) ∨ (d ∨ ¬c)] (Implication Rule)
8. [(¬a ∨ ¬b) ∨ (d ∨ ¬c)] (DeMorgan's Law)
9. [¬a ∨ ¬b ∨ ¬c ∨ d] (removing some parentheses and rearranging terms)
10. Since we have (a,b,c) True, this becomes: [F ∨ d] = d
1
keywords: Using,inference,or,not,rarr,rules,argument,prove,the,Using inference rules, prove the argument a^ (b→c) ^ [(a^b) →(d ∨¬c)] ^ b →d
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .