∫ (x^2-1)/(x^4-x^2-1)dx
-
Let, I = ∫ (x^2-1)/(x^4-x^2-1)dx
= ∫ (x^2-1)/x^2(x^2-1+1/x^2)dx
= ∫ (1-1/x^2)/[(x+1/x^2)-3]
say x+1/x=z => (1-1/x^2)dx=dz
So, I= ∫ dz/[z^2-(√3)^2]
= 1/2√3.log|(z-√3)/(z+√3)|+c
= 1/2√3.log|(x^2- √3x+1)/( x^2+√3x+1)|+C Ans.
= ∫ (x^2-1)/x^2(x^2-1+1/x^2)dx
= ∫ (1-1/x^2)/[(x+1/x^2)-3]
say x+1/x=z => (1-1/x^2)dx=dz
So, I= ∫ dz/[z^2-(√3)^2]
= 1/2√3.log|(z-√3)/(z+√3)|+c
= 1/2√3.log|(x^2- √3x+1)/( x^2+√3x+1)|+C Ans.
-
http://www.wolframalpha.com/input/?i=int…
Click on "Show Steps"
Have fun!
Click on "Show Steps"
Have fun!