Given that f(x)=(x^(11))(h(x)), h(-1)=5, h'(-1)=8. Calculate f'(-1).
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Given that f(x)=(x^(11))(h(x)), h(-1)=5, h'(-1)=8. Calculate f'(-1).

Given that f(x)=(x^(11))(h(x)), h(-1)=5, h'(-1)=8. Calculate f'(-1).

[From: ] [author: ] [Date: 11-10-07] [Hit: ]
............
You will need the power rule and product rule.

-
f '(x) = [(d/dx) x^11] * h(x) + x^11 * h'(x) by the product rule
.......= 11x^10 h(x) + x^11 h'(x).

Let x = -1:
f '(-1) = 11 * (-1)^10 * h(-1) + (-1)^11 * h'(-1)
........= 11 * 1 * 5 + (-1) * 8
........= 47.

I hope this helps!
1
keywords: Calculate,that,Given,039,8.,11,Given that f(x)=(x^(11))(h(x)), h(-1)=5, h'(-1)=8. Calculate f'(-1).
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .