1 / ((e^x)((e^x)+1) dx
Please show complete solution...
Please show complete solution...
-
∫dx/[e^(x)(e^(x) + 1)]
∫e^(-x) dx - ∫dx/(e^(x) + 1)
-e^(-x) - ∫dx + ∫e^(x)/((e^(x) + 1)) dx
-e^(-x) - x + ln(e^(x) + 1) + C
∫e^(-x) dx - ∫dx/(e^(x) + 1)
-e^(-x) - ∫dx + ∫e^(x)/((e^(x) + 1)) dx
-e^(-x) - x + ln(e^(x) + 1) + C
-
Note that 1/(e^x(e^x + 1)) = 1/(e^(2x) + e^x) = e^(-2x) + e(-x)
∫ (e^(-2x) + e(-x)) dx
= -(1/2)e^(-2x) - e^(-x) + C
This is the complete solution
∫ (e^(-2x) + e(-x)) dx
= -(1/2)e^(-2x) - e^(-x) + C
This is the complete solution
-
is that even a problem ?? what grade are you in !!!