I mainly just wanted to know if my equations were right, I think that I've done it correctly, but at the same time I'm not sure, haha. Thank you in advance!
1. The problem statement, all variables and given/known data
Solve for V1, V2, V3 and V4 (in decimals) using node voltage analysis method for the following:
http://i52.tinypic.com/108csn4.png
2. Relevant equations:
Node Voltage Analysis
3. The attempt at a solution:
For Node #1:
V1 = 6 V
For Node #4:
V4 = 16 V
For Node #2:
(V2) − (V3)3300 + (V2)1000 + (V2) − 61500 = 0
0.00197(V2) - 0.000303(V3)= 0.004 --> equation 1
For Node #3:
(V3) − (V2)3300 + (V3)4700 + V3 −162200 = 0
-0.000303(V2)+0.00097(V3) = 0.007273
V3= 0.3124(V2) + 7.4979 --> equation 2
Solve for V2 by substituting V3 into equation 1:
0.00197(V2) - 0.000303(0.3124(V2) + 7.4979) = 0.004
0.001875(V2) - 0.006272 = 0
V2 = 3.3451 V
Solve for V3 by substituting V2 into equation 2:
V3= 0.3124(3.3451) + 7.4979
V3 = 8.5428 V
1. The problem statement, all variables and given/known data
Solve for V1, V2, V3 and V4 (in decimals) using node voltage analysis method for the following:
http://i52.tinypic.com/108csn4.png
2. Relevant equations:
Node Voltage Analysis
3. The attempt at a solution:
For Node #1:
V1 = 6 V
For Node #4:
V4 = 16 V
For Node #2:
(V2) − (V3)3300 + (V2)1000 + (V2) − 61500 = 0
0.00197(V2) - 0.000303(V3)= 0.004 --> equation 1
For Node #3:
(V3) − (V2)3300 + (V3)4700 + V3 −162200 = 0
-0.000303(V2)+0.00097(V3) = 0.007273
V3= 0.3124(V2) + 7.4979 --> equation 2
Solve for V2 by substituting V3 into equation 1:
0.00197(V2) - 0.000303(0.3124(V2) + 7.4979) = 0.004
0.001875(V2) - 0.006272 = 0
V2 = 3.3451 V
Solve for V3 by substituting V2 into equation 2:
V3= 0.3124(3.3451) + 7.4979
V3 = 8.5428 V
-
V1 = 6 V it's ok
V4 = 16 V it's ok
BUT " V2−V33300 + V21000 + V2−61500 = 0 " where did u get that !!
ok let's do it again step by step :
at Node #2 it should be :
(V1 - V2)/1500 = V2/1000 + (V2 - V3)/3300 .... get why ?
=> (6 - V2)/1500 = V2/1000 + (V2 - V3)/3300
=> 0.004 - V2/1500 = 0.001 V2 + V2/3300 - V3/3300
simplifying :
=> 0.002 V2 - 0.0003 V3 = 0.004 ... (1) [Note : some numbers are approximated]
For Node #3 :
=> (V2 - V3) /3300 = (V3 - 16) /2200 + V3 /4700
simplify :
=> 0.0003 V2 - 0.0003 V3 = 0.00045 V3 - 0.00727 + 0.000213 V3
=> 0.00036 V3 - 0.0003V2 = 0.00727 .... (2)
.....0.002 V2 - 0.0003 V3 = 0.004 ... (1)
Solving : from (1) u get : V2 = (0.004 + 0.0003 V3)/0.002 = 2 + 0.15 V3
sub this in (2) => 0.00036 V3 - 0.0003 (2 + 0.15 V3) = 0.00727
=> 0.000315 V3 = 0.00787
=> V3 = 25 V (approx) <<<
and so V2 = 2 + 0.15 V3 = 5.75 V (approx) <<
V4 = 16 V it's ok
BUT " V2−V33300 + V21000 + V2−61500 = 0 " where did u get that !!
ok let's do it again step by step :
at Node #2 it should be :
(V1 - V2)/1500 = V2/1000 + (V2 - V3)/3300 .... get why ?
=> (6 - V2)/1500 = V2/1000 + (V2 - V3)/3300
=> 0.004 - V2/1500 = 0.001 V2 + V2/3300 - V3/3300
simplifying :
=> 0.002 V2 - 0.0003 V3 = 0.004 ... (1) [Note : some numbers are approximated]
For Node #3 :
=> (V2 - V3) /3300 = (V3 - 16) /2200 + V3 /4700
simplify :
=> 0.0003 V2 - 0.0003 V3 = 0.00045 V3 - 0.00727 + 0.000213 V3
=> 0.00036 V3 - 0.0003V2 = 0.00727 .... (2)
.....0.002 V2 - 0.0003 V3 = 0.004 ... (1)
Solving : from (1) u get : V2 = (0.004 + 0.0003 V3)/0.002 = 2 + 0.15 V3
sub this in (2) => 0.00036 V3 - 0.0003 (2 + 0.15 V3) = 0.00727
=> 0.000315 V3 = 0.00787
=> V3 = 25 V (approx) <<<
and so V2 = 2 + 0.15 V3 = 5.75 V (approx) <<