
answers:
say: (2x7)(x10)

Latasha say: q... 2x^2 27x +70
=> ( 2x )( x )  ( 7 + ( 10 x 2) )( x ) + ( 7 )( 10 ) ( factorize the terms )
=> ( 2x 7 ) ( x  10 )

Deepak Suwalka say: Break 27x in two terms 20x7x and rewrite
2x²  20x  7x + 70
Take 2x common from first two terms and 7 from last two terms
2x(x10) 7(x10)
(2x  7)(x  10)

Mathias say: 2x^2  27x + 70.
2 * [x^2  (27/2) * x + 35] < Complete the square at this stage.
2 * [(x  27/4)^2  729/16 + 35].
2 * [(x  27/4)^2  729/16 + 560/16].
2 * [(x  27/4)^2  169/16].
2 * [(x  27/4)^2  (13/4)^2].
2 * [(x  27/4  13/4) * (x  27/4 + 13/4)].
2 * [(x  40/4) * (x  14/4)].
2 * [(x  10) * (x  7/2)].
(x  10) * 2 * (x  7/2).
(x  10) * (2x  7).
Ans.: (2x  7) * (x  10).

Como say: [ 2x  7 ] [ x  10 ]

la console say: = 2x²  27x + 70
= 2.[x²  (27/2).x + 35]
= 2.[x²  (27/2).x + (27/4)²  (27/4)² + 35]
= 2.[x²  (27/2).x + (27/4)²  (729/16) + (560/16)]
= 2.[x²  (27/2).x + (27/4)²  (169/16)] → you recognize: a²  2ab + b²
= 2.[ { x²  (27/2).x + (27/4)² }  (169/16) ] → you know that: a²  2ab + b² = (a  b)²
= 2.[ { x  (27/4) }²  (169/16) ] → you know that: 169/16 = (13/4)²
= 2.[ { x  (27/4) }²  (13/4)² ] → recall: a²  b² = (a + b).(a  b)
= 2.[x  (27/4) + (13/4)].[x  (27/4)  (13/4)]
= 2.[x  (14/4)].[x  (40/4)] → you simplify
= 2.[x  (7/2)].[x  10] → you put 2 into the first […]
= (2x  7).(x  10)

Amy say: By factors:
2 * 70 = 140
Find a pair of factors of 140 whose sum is 27.
Answer is 7 and 20
2x^2 27x +70 = 2x^2 7x  20x +70
= x(2x  7)  10(2x  7)