The question is (2a4b3) (-3ab) 3 (10a2b2) the numbers after the first numbers of each bracket are exponents and the letters are exponent. You guys probably already know that thanks! Full detail please!
-
(2a⁴b³)(-3ab)³(10a²b²) = (2a⁴b³)(-3)³a³b³(10a²b²)
= (2a⁴b³)(-27)a³b³(10a²b²)
= -540a⁴⁺³⁺²b³⁺³⁺²
= -540a⁹b⁸
= (2a⁴b³)(-27)a³b³(10a²b²)
= -540a⁴⁺³⁺²b³⁺³⁺²
= -540a⁹b⁸
-
assuming expression is
(2a^4b^3) times (-3ab)^3 times (10a^2b^2)
is the same as
(2a^4b^3) times (-3^1a^1b^1)^3 times (10a^2b^2)
law of exponents; to the power of a power, multiply the exponents
2a^4b^3 times [-3^(1times3) a^(1times3) b^(1times3)] times 10a^2b^2
2a^4b^3 times -3^3a^3b^3 times 10a^2b^2
law of exponents; multiply the bases, add the exponents
(2)(-3^3)(10) times a^(4+3+2) times b^(3+3+2)
20(-27) times a^9 times b^8
-540a^9b^8
(2a^4b^3) times (-3ab)^3 times (10a^2b^2)
is the same as
(2a^4b^3) times (-3^1a^1b^1)^3 times (10a^2b^2)
law of exponents; to the power of a power, multiply the exponents
2a^4b^3 times [-3^(1times3) a^(1times3) b^(1times3)] times 10a^2b^2
2a^4b^3 times -3^3a^3b^3 times 10a^2b^2
law of exponents; multiply the bases, add the exponents
(2)(-3^3)(10) times a^(4+3+2) times b^(3+3+2)
20(-27) times a^9 times b^8
-540a^9b^8