sin^2θ + tan^2θ + Cos^2θ
the answer is sec^2θ but i wanna know how it done
the answer is sec^2θ but i wanna know how it done
-
sin²θ + tan²θ + cos²θ = sin²θ + sin²θ/cos²θ + cos²θ
= (1 - cos²θ) + sin²θ/cos²θ + cos²θ
= 1 + sin²θ/cos²θ
= cos²θ/cos²θ + sin²θ/cos²θ
= (cos²θ + sin²θ)/cos²θ
= 1/cos²θ
= sec²θ
= (1 - cos²θ) + sin²θ/cos²θ + cos²θ
= 1 + sin²θ/cos²θ
= cos²θ/cos²θ + sin²θ/cos²θ
= (cos²θ + sin²θ)/cos²θ
= 1/cos²θ
= sec²θ
-
sin^2 x + tan^2x + cos^2 x
= 1 + tan^2 x
= 1 + (sin^2 x)/(cos^2 x)
= (cos^2 x + sin^2 x) / (cos^2 x)
=1 /(cos^2 x)
= sec^2 x
= 1 + tan^2 x
= 1 + (sin^2 x)/(cos^2 x)
= (cos^2 x + sin^2 x) / (cos^2 x)
=1 /(cos^2 x)
= sec^2 x