I suck at doing proofs. Could you help me.
/_AOB and /_BOC are a linear pair;
m/_AOB=m/_BOC
Prove: /_AOB and /_BOC are right angles
I just don't get it :( (/_=the angle sign)
/_AOB and /_BOC are a linear pair;
m/_AOB=m/_BOC
Prove: /_AOB and /_BOC are right angles
I just don't get it :( (/_=the angle sign)
-
Start with what you are given:
1. ∠AOB and ∠BOC are a linear pair (Given)
2. m∠AOB = m∠BOC (Given)
Now remember what the definition of a linear pair of angles means. The definition is:
m∠AOB + m∠BOC = 180º
Hence for our step 3 of the proof we are using the fact that ∠AOB and ∠BOC are a linear pair to write:
3. m∠AOB + m∠BOC = 180º (By definition of a linear pair)
We also know from step 2 that m∠AOB = m∠BOC, so plug in m∠BOC for m∠AOB is step 3:
4. m∠BOC + m∠BOC = 180º
Combine like terms to get:
5. 2*m∠BOC = 180º
Divide both sides by the number 2:
6. m∠BOC = 90º
So ∠BOC is a right angle. Now going back to step 3 and plugging in m∠BOC = 90º, we have:
7. m∠AOB + 90º = 180º
Subtract 90º from both sides:
8. m∠AOB = 90º
So ∠AOB is a right angle as well. Thus we have shown both ∠AOB and ∠BOC are right angles.
Or in short:
1. ∠AOB and ∠BOC are a linear pair (Given)
2. m∠AOB = m∠BOC (Given)
3. m∠AOB + m∠BOC = 180º (By definition of a linear pair)
4. m∠BOC + m∠BOC = 180º (By steps 2 and 3)
5. 2*m∠BOC = 180º (Combine like terms)
6. m∠BOC = 90º (Divide through by number 2)
7. m∠AOB + 90º = 180º (By steps 3 and 6)
8. m∠AOB = 90º (Subtract 90º from both sides)
9. ∠AOB and ∠BOC are right angles (By steps 6 and 8)
1. ∠AOB and ∠BOC are a linear pair (Given)
2. m∠AOB = m∠BOC (Given)
Now remember what the definition of a linear pair of angles means. The definition is:
m∠AOB + m∠BOC = 180º
Hence for our step 3 of the proof we are using the fact that ∠AOB and ∠BOC are a linear pair to write:
3. m∠AOB + m∠BOC = 180º (By definition of a linear pair)
We also know from step 2 that m∠AOB = m∠BOC, so plug in m∠BOC for m∠AOB is step 3:
4. m∠BOC + m∠BOC = 180º
Combine like terms to get:
5. 2*m∠BOC = 180º
Divide both sides by the number 2:
6. m∠BOC = 90º
So ∠BOC is a right angle. Now going back to step 3 and plugging in m∠BOC = 90º, we have:
7. m∠AOB + 90º = 180º
Subtract 90º from both sides:
8. m∠AOB = 90º
So ∠AOB is a right angle as well. Thus we have shown both ∠AOB and ∠BOC are right angles.
Or in short:
1. ∠AOB and ∠BOC are a linear pair (Given)
2. m∠AOB = m∠BOC (Given)
3. m∠AOB + m∠BOC = 180º (By definition of a linear pair)
4. m∠BOC + m∠BOC = 180º (By steps 2 and 3)
5. 2*m∠BOC = 180º (Combine like terms)
6. m∠BOC = 90º (Divide through by number 2)
7. m∠AOB + 90º = 180º (By steps 3 and 6)
8. m∠AOB = 90º (Subtract 90º from both sides)
9. ∠AOB and ∠BOC are right angles (By steps 6 and 8)
-
(1) ∠AOB and ∠BOC are...........Given
......a linear pair
(2) ∠AOB = ∠BOC .....................Given
(3) ∠AOB + ∠BOC = 180°..........Definition of LINEAR PAIRed angles
(4) ∠AOB + ∠AOB = 180°........Substitution from (2)
(5) 2 ∠AOB = 180°......................Angle Addition Property
(6) ∠AOB = 180° / 2....................Division
(7) ∠AOB = 90°...........................Simplify
(8) ∠AOB = ∠BOC .....................Given
(9) ∠BOC = 90°............................Transitiv… Property
......a linear pair
(2) ∠AOB = ∠BOC .....................Given
(3) ∠AOB + ∠BOC = 180°..........Definition of LINEAR PAIRed angles
(4) ∠AOB + ∠AOB = 180°........Substitution from (2)
(5) 2 ∠AOB = 180°......................Angle Addition Property
(6) ∠AOB = 180° / 2....................Division
(7) ∠AOB = 90°...........................Simplify
(8) ∠AOB = ∠BOC .....................Given
(9) ∠BOC = 90°............................Transitiv… Property