I got f(2)=1.5 thankyou
-
F(x) = (4x-2x^2+6)/(2x) = h/k
derivative of a quotient
(h/k)' = (h'k - hk')/k^2
h = 4x - 2x^2 +6 ---> h' = 4 - 4x
k = 2x -----> k' = 2
F'(x) = ((4 - 4x)(2x) - 2(4x - 2x^2 +6))/(2x)^2 =
= (8x - 8x^2 - 8x + 4x^2 - 12)/(4x^2) =
= - (4x^2 + 12)/(4x^2) =
= - 4(x^2 + 3)/(4x^2) =
= - (x^2 + 3)/x^2
derivative of a quotient
(h/k)' = (h'k - hk')/k^2
h = 4x - 2x^2 +6 ---> h' = 4 - 4x
k = 2x -----> k' = 2
F'(x) = ((4 - 4x)(2x) - 2(4x - 2x^2 +6))/(2x)^2 =
= (8x - 8x^2 - 8x + 4x^2 - 12)/(4x^2) =
= - (4x^2 + 12)/(4x^2) =
= - 4(x^2 + 3)/(4x^2) =
= - (x^2 + 3)/x^2
-
f(x) = (4x − 2x² + 6) / (2x)
f(x) = 2 − x + 3/x
f'(x) = 0 − 1 − 3/x²
f'(x) = −(x² + 3) / x²
f(x) = 2 − x + 3/x
f'(x) = 0 − 1 − 3/x²
f'(x) = −(x² + 3) / x²
-
f(x)=(4x+2x^2+6)/2x = 2-x+3/x
f'(x)= -1 - 3/x^2
f'(x)= -1 - 3/x^2