Use the quotient rule:
If f(x) = u/v, then f'(x) = (u'v - uv') / v^2
So,
f(x) = 1/(x+7)
f'(x) = ((1)'(x+7) - 1(x+7)') / (x+7)^2
f'(x) = (0*(x+7) - 1(1)) / (x+7)^2
f'(x) = -1 / (x+7)^2
If f(x) = u/v, then f'(x) = (u'v - uv') / v^2
So,
f(x) = 1/(x+7)
f'(x) = ((1)'(x+7) - 1(x+7)') / (x+7)^2
f'(x) = (0*(x+7) - 1(1)) / (x+7)^2
f'(x) = -1 / (x+7)^2