The answer is sec x + 2cos x - cos^3 x/3 + c
I need to see how this answer is attained because I can't get it.
I need to see how this answer is attained because I can't get it.
-
∫ sin^5(x) dx(cos x)^(-2)
=> ∫ sin^5(x) dx / cos^2(x)
= ∫ sin^4(x) sin x dx / cos^2(x)
= ∫ ( 1 - cos^2(x))^2 sin x dx / cos^2(x)
let cos x = t
- sin x dx = dt
sin x dx = - dt
now the integral changes to
- ∫ ( 1 - t^2)^2 dt /t^2
= - ∫ ( 1 + t^4 - 2t^2 ) dt /t^2
= -∫ dt /t^2 - ∫ t^4 dt /t^2 + 2∫ t^2 /t^2 dt
= -∫ dt /t^2 - ∫ t^2 dt + 2∫ dt
= (1 / t) - (1/3)t^3 + 2t + C
back substitute t = cos x
(1 / cos x) - (1/3)cos^3(x) + 2 cos x + C
= sec x - (1/3)cos^3(x) + 2 cos x + C
=> ∫ sin^5(x) dx / cos^2(x)
= ∫ sin^4(x) sin x dx / cos^2(x)
= ∫ ( 1 - cos^2(x))^2 sin x dx / cos^2(x)
let cos x = t
- sin x dx = dt
sin x dx = - dt
now the integral changes to
- ∫ ( 1 - t^2)^2 dt /t^2
= - ∫ ( 1 + t^4 - 2t^2 ) dt /t^2
= -∫ dt /t^2 - ∫ t^4 dt /t^2 + 2∫ t^2 /t^2 dt
= -∫ dt /t^2 - ∫ t^2 dt + 2∫ dt
= (1 / t) - (1/3)t^3 + 2t + C
back substitute t = cos x
(1 / cos x) - (1/3)cos^3(x) + 2 cos x + C
= sec x - (1/3)cos^3(x) + 2 cos x + C