Find x-intercepts of equations.
(1) y = 3^(x - 1) - 2
(2) y = 2^(x/2) - 5
(1) y = 3^(x - 1) - 2
(2) y = 2^(x/2) - 5
-
x intercept means y=0.
so,
3^(x-) = 2
log 3^(x-1) = log 2
(x-1) log 3 = log 2
x log 3 - log 3 = Log 2
x log 3/ log 3= log 2
x log 3 = LOG 6
X = LOG 6/ LOG 3
= 1.6309
========================
2. y = 2^(x/2) -5
FOR x intercept, y=0
so
2^(x/2) = 5
log 2^(x/2) = log 5
x/2 log 2 = log 5
x/2 = log 5/ log 2
= 2.32
so
x = 2*2.32
= 4.64
so,
3^(x-) = 2
log 3^(x-1) = log 2
(x-1) log 3 = log 2
x log 3 - log 3 = Log 2
x log 3/ log 3= log 2
x log 3 = LOG 6
X = LOG 6/ LOG 3
= 1.6309
========================
2. y = 2^(x/2) -5
FOR x intercept, y=0
so
2^(x/2) = 5
log 2^(x/2) = log 5
x/2 log 2 = log 5
x/2 = log 5/ log 2
= 2.32
so
x = 2*2.32
= 4.64
-
y = 3^(x - 1) - 2
0 = 3^(x - 1) - 2
2 = 3^(x - 1)
log(2) = (x-1) log(3)
log(2)/log(3) -1 = x
x = 1.630929754
~~~~~~~~~~~~~~~
y = 2^(x/2) - 5
0 = 2^(x/2) - 5
5 = 2^(x/2)
log(5) = x/2 log(2)
2(log(5)/log(2)) = x
x = 4.64385619
0 = 3^(x - 1) - 2
2 = 3^(x - 1)
log(2) = (x-1) log(3)
log(2)/log(3) -1 = x
x = 1.630929754
~~~~~~~~~~~~~~~
y = 2^(x/2) - 5
0 = 2^(x/2) - 5
5 = 2^(x/2)
log(5) = x/2 log(2)
2(log(5)/log(2)) = x
x = 4.64385619
-
x intercept is when y = 0
1) ln6/ln3
2) 2ln5 / ln2
i doubt you type the equations correctly
1) ln6/ln3
2) 2ln5 / ln2
i doubt you type the equations correctly