How to find limit(x->0)(1/x)integral(0 to x) 2010^(1-t^2) dt
Favorites|Homepage
Subscriptions | sitemap
HOME > > How to find limit(x->0)(1/x)integral(0 to x) 2010^(1-t^2) dt

How to find limit(x->0)(1/x)integral(0 to x) 2010^(1-t^2) dt

[From: ] [author: ] [Date: 12-04-20] [Hit: ]
......
Find the limit of
(1/x) * integral(0 to x) 2010^(1-t^2) dt

when x->0

In the integral the lower limit is 0 and the upper limit is x

-
lim(x→0) (1/x) ∫(t = 0 to x) 2010^(1 - t^2) dt
= lim(x→0) [∫(t = 0 to x) 2010^(1 - t^2) dt] / x; this is of the form 0/0
= lim(x→0) 2010^(1 - x^2) / 1, via L'Hopital's Rule and Fund Theorem of Calculus
= 2010^(1 - 0)
= 2010.

I hope this helps!
1
keywords: find,dt,How,integral,gt,limit,2010,to,How to find limit(x->0)(1/x)integral(0 to x) 2010^(1-t^2) dt
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .