I used "completing the square" method to factorise this quadratic equation, but I'm unsure of the answer. please help. Showing the process to achieve the answer would help a lot :)
-
use x = ( -b +- sqrt( b^2 - 4ac ) ) / 2a
a=1
b=-7
c=2
hence
x = (7 + sqrt((-7)^2 - 4*1*2))/2*1 and (7 - sqrt((-7)^2 - 4*1*2))/2*1
x = (7 + sqrt(49 - 8))/2 and (7 - sqrt(49 - 8))/2
x = (7 + sqrt(41))/2 and (7 - sqrt(41))/2
x = (7 + 6.4031)/2 and (7 - 6.4031)/2
x = (13.4031)/2 and (0.5969)/2
x = 6.7016 and 0.2985
Answer:
x = 6.7016 and x = 0.2985
a=1
b=-7
c=2
hence
x = (7 + sqrt((-7)^2 - 4*1*2))/2*1 and (7 - sqrt((-7)^2 - 4*1*2))/2*1
x = (7 + sqrt(49 - 8))/2 and (7 - sqrt(49 - 8))/2
x = (7 + sqrt(41))/2 and (7 - sqrt(41))/2
x = (7 + 6.4031)/2 and (7 - 6.4031)/2
x = (13.4031)/2 and (0.5969)/2
x = 6.7016 and 0.2985
Answer:
x = 6.7016 and x = 0.2985
-
x² -7x +2
=x^2-2*3.5x+(3.5)^2-(3.5)^2+2
=x^2-2*3.5x+(3.5)^2-10.25
=(x-3.5)^2-(3.2)^2
=(x-3.5-3.2) (x-3.5+3.2)
=(x-6.7) (x-0.3) Ans.
=x^2-2*3.5x+(3.5)^2-(3.5)^2+2
=x^2-2*3.5x+(3.5)^2-10.25
=(x-3.5)^2-(3.2)^2
=(x-3.5-3.2) (x-3.5+3.2)
=(x-6.7) (x-0.3) Ans.
-
Use the quadratic formula
(-b(+/-)(b^2 -4ac)^1/2)/2a
where here
a=1
b=-7
c=2
then you will get x a= -0.70 or -6.7
:)
(-b(+/-)(b^2 -4ac)^1/2)/2a
where here
a=1
b=-7
c=2
then you will get x a= -0.70 or -6.7
:)
-
Only use completing the square method if you are solving the equation
the values for x are 6.701562119 and0.298437881
the values for x are 6.701562119 and0.298437881
-
compare above equation with ax^2+bx+c
then
x=(-b(+-)(sqrt)(b^2-4ac))/2a
u ll get ur answer
then
x=(-b(+-)(sqrt)(b^2-4ac))/2a
u ll get ur answer
-
x^2 - 7x + 2
(x - 7/2)^2 - (7/2)^2 + 2
(x - 7/2)^2 - 49/4 + 2
(x - 7/2)^2 - 41/4
(x - 7/2)^2 - (7/2)^2 + 2
(x - 7/2)^2 - 49/4 + 2
(x - 7/2)^2 - 41/4