For what value(s) of k is the line x+2y+k=0 tangent to the circle x^2+y^2-2x+4y+1=0
Favorites|Homepage
Subscriptions | sitemap
HOME > > For what value(s) of k is the line x+2y+k=0 tangent to the circle x^2+y^2-2x+4y+1=0

For what value(s) of k is the line x+2y+k=0 tangent to the circle x^2+y^2-2x+4y+1=0

[From: ] [author: ] [Date: 12-01-29] [Hit: ]
-2D + 3E + F = -13x² + y² + Dx + Ey + F = 0(2)² + (-1)² + D(2) + E(-1) + F = 03. 2D - E + F = -5The best way to solve these simultaneously is to spot some linear combinations that work--and this is something that takes phenomenal genius to accomplish.So instead I will just make a matrix:1. D + 5E + F = -262. -2D + 3E + F = -133. 2D - E + F = -5|.......
=> 3 * (-9/5) + 2E' = - 13
=> 2E' = 27/5 - 13 = - 38/5 => E' = - 19/5

Plugging, D' = - 9/5 and E' = - 19/5 in ( 1 ),
- 9/5 + 5 * (-19/5) + F' = - 26
=> F' = - 26 + 9/5 + 19 = - 26/5.

-
x² + y² + D'x + E'y + F' = 0
(1)² + (5)² + D'(1) + E'(5) + F' = 0
1. D' + 5E' + F' = -26

x² + y² + D'x + E'y + F' = 0
(-2)² + (3)² + D'(-2) + E'(3) + F' = 0
2. -2D' + 3E' + F' = -13

x² + y² + D'x + E'y + F' = 0
(2)² + (-1)² + D'(2) + E'(-1) + F' = 0
3. 2D' - E' + F' = -5

The best way to solve these "simultaneously" is to spot some linear combinations that work--and this is something that takes phenomenal genius to accomplish.

So instead I will just make a matrix:


1. D' + 5E' + F' = -26
2. -2D' + 3E' + F' = -13
3. 2D' - E' + F' = -5

|...1...5...1...|...-26...|
|..-2...3...1...|...-13...|
|...2..-1...1...|....-5....|

I am already nervous about the third column...

Add row 2 to row 3

|...1...5...1...|...-26...|
|..-2...3...1...|...-13...|
|...0...2...2...|...-18...|

Add 2 times row 1 to row 2

|...1...5...1...|...-26...|
|...0..13..3...|...-65...|
|...0...2...2...|...-18...|

Lets divide row 3 through by 2

|...1...5...1...|...-26...|
|...0..13..3...|...-65...|
|...0...1...1...|....-9....|

Then swap rows 2 and 3

|...1...5...1...|...-26...|
|...0...1...1...|....-9....|
|...0..13..3...|...-65...|

Multiply -5(row 2) + row1→row 1 and -13(row 2) + row 3→row 3

|...1...0..-4...|...19....|
|...0...1...1...|....-9....|
|...0...0 .-10.|... 52...|

Divide row 3 by -10

|...1...0..-4...|...19....|
|...0...1...1...|....-9....|
|...0...0...1...|...-26/5|
keywords: of,line,what,is,value,For,tangent,circle,to,the,For what value(s) of k is the line x+2y+k=0 tangent to the circle x^2+y^2-2x+4y+1=0
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .