I neeeeed your answers asap.
-
Say, aren't you from dominican school?
-
Let the number be x and reciprocal 1/x
=> x - 2/x = 17/4
=> x² - 2 = 17x/4
i.e. 4x² - 17x - 8 = 0
Using the quadratic formula we have:
x = (17 ± √((17)²+ 4(4)(8))/8
=> x = [17 ± √(289 + 128)]/8
=> x = [17 ± √417]/8
so, x = 4.68 or x = -0.43
:)>
=> x - 2/x = 17/4
=> x² - 2 = 17x/4
i.e. 4x² - 17x - 8 = 0
Using the quadratic formula we have:
x = (17 ± √((17)²+ 4(4)(8))/8
=> x = [17 ± √(289 + 128)]/8
=> x = [17 ± √417]/8
so, x = 4.68 or x = -0.43
:)>
-
x -2/x = 17/4
multiply with x:
x^2 -2 = 17/4 x
move to one side:
x^2 -17/4 x - 2 = 0
formula for quadratic equations => x=(17/4 +/- sqrt(289/16 + 4*2)/2 =
= 17/8 +/- sqrt(417/16)/2 =
= 17/8 +/- sqrt(417/(16*4)) =
= 17/8 +/- sqrt(417)/sqrt(64) = 17/8 +/- sqrt(417)/8
so x1 = 17/8 + sqrt(417)/8
x2 = 17/8 - sqrt(417)/8
multiply with x:
x^2 -2 = 17/4 x
move to one side:
x^2 -17/4 x - 2 = 0
formula for quadratic equations => x=(17/4 +/- sqrt(289/16 + 4*2)/2 =
= 17/8 +/- sqrt(417/16)/2 =
= 17/8 +/- sqrt(417/(16*4)) =
= 17/8 +/- sqrt(417)/sqrt(64) = 17/8 +/- sqrt(417)/8
so x1 = 17/8 + sqrt(417)/8
x2 = 17/8 - sqrt(417)/8
-
a - 2/a = 17/4
Two possible answers (used a calc. to solve)
a = [17 - root(417)] / 8
a = [17 + root(417)] / 8
Two possible answers (used a calc. to solve)
a = [17 - root(417)] / 8
a = [17 + root(417)] / 8
-
a - 2/a = 17/4
4a^2 - 17 a -8 = 0
Use the quadratic formula,
a = [ 17 + sqrt(417) ] / 8
a = [ 17 - sqrt(417) ] / 8
4a^2 - 17 a -8 = 0
Use the quadratic formula,
a = [ 17 + sqrt(417) ] / 8
a = [ 17 - sqrt(417) ] / 8
-
(x - 2/x) = 17/4
x^2 -2 = x17/4
4x^2 -8 - 17x = 0
4x^2 -17x - 8 = 0
x = {17 +/- sqrt (289 +128)}/8
x = {17 +/ - sqrt(417)}/8
x^2 -2 = x17/4
4x^2 -8 - 17x = 0
4x^2 -17x - 8 = 0
x = {17 +/- sqrt (289 +128)}/8
x = {17 +/ - sqrt(417)}/8
-
x - 2/x = 17/4
4x² - 8 = 17x
4x² - 17x - 8 = 0
This does not lead to whole number solution.
4x² - 8 = 17x
4x² - 17x - 8 = 0
This does not lead to whole number solution.