Please help and explain!! I know that sin(2x)= 2sin(x)cos(x) but I get lost from there.
-
...you know that x is in the second quadrant, so you know that cos x is negative...
the triangle is a 3, 4, 5 right triangle...
sin (2x) = 2 sin x cos x = 2 (3/5)(- 4/5) = - 24/25
qed
the triangle is a 3, 4, 5 right triangle...
sin (2x) = 2 sin x cos x = 2 (3/5)(- 4/5) = - 24/25
qed
-
sin(2x) = 2 sin(x) * cos(x)
= 2(3/5)(4/5) = 24/25
sin(x) = 3/5
x = sin^-1(3/5)
= 36.86989764584377
2x = 73.73979529168754
Therefore sin(2x) is 1st quadrant .............Ans
= 2(3/5)(4/5) = 24/25
sin(x) = 3/5
x = sin^-1(3/5)
= 36.86989764584377
2x = 73.73979529168754
Therefore sin(2x) is 1st quadrant .............Ans
-
x in quadrant II, cos(x)<0
cos(x) = -√(1-(sin(x))^2) = -√(1-(3/5)^2) = -4/5
sin(2x) = 2sin(x)cos(x) = 2*3/5*(-4/5) = -24/25
cos(x) = -√(1-(sin(x))^2) = -√(1-(3/5)^2) = -4/5
sin(2x) = 2sin(x)cos(x) = 2*3/5*(-4/5) = -24/25
-
x=36.86 there fore 2x=73.73
for sin73.73=0.96
as this is in IInd quadrant subtract this value from 180 u will get the required value
for sin73.73=0.96
as this is in IInd quadrant subtract this value from 180 u will get the required value
-
cos^x+sin^x= 1............cos(x)= 4/5
sin(2x)= 2sin(x)cos(x)
=2*(3/5)*(4/5)
= 24/25
=0.96
sin(2x)= 2sin(x)cos(x)
=2*(3/5)*(4/5)
= 24/25
=0.96