f(x)=3sin(2pi*x)
Evaluate A=f(1/2011)-f(2012/2011)
Evaluate A=f(1/2011)-f(2012/2011)
-
Observe that 2012/2011 = 1 + (1/2011) so
f(2012/2011) = 3 sin(2π(1 + (1/2011)) = 3 sin(2π + 2π/2011)
Using the identity for the sine of a sum,
sin(2π + 2π/2011) = sin(2π) cos( 2π/2011) + cos(2π) sin(2π/2011)
= 0 * cos( 2π/2011) + 1 * sin(2π/2011)
= sin(2π/2011)
Therefore, A = 0.
f(2012/2011) = 3 sin(2π(1 + (1/2011)) = 3 sin(2π + 2π/2011)
Using the identity for the sine of a sum,
sin(2π + 2π/2011) = sin(2π) cos( 2π/2011) + cos(2π) sin(2π/2011)
= 0 * cos( 2π/2011) + 1 * sin(2π/2011)
= sin(2π/2011)
Therefore, A = 0.