Let I = ∫(ax+b)^1/2 dx
say ax+b = t , again dt/dx= d/dx(ax+b) = d/dx(ax)+d/dx(b)
= a
=> dt=adx....(1)
now,I = ∫(ax+b)^1/2 dx = ∫(t)^1/2dt/a [from (1)]
=1/a ∫t^(1/2)= 1/a { t^(3/2)}/(3/2)+C
= 2/3a.t^3/2+C
= 2/3a.(ax+b)^(3/2)+C Ans.
say ax+b = t , again dt/dx= d/dx(ax+b) = d/dx(ax)+d/dx(b)
= a
=> dt=adx....(1)
now,I = ∫(ax+b)^1/2 dx = ∫(t)^1/2dt/a [from (1)]
=1/a ∫t^(1/2)= 1/a { t^(3/2)}/(3/2)+C
= 2/3a.t^3/2+C
= 2/3a.(ax+b)^(3/2)+C Ans.
-
Use u-substitution here. Let...
u = ax + b
du = adx ==> dx = du/a
∫(ax+b)^1/2 dx = ∫u^(1/2)(du)/a
.....=(1/a)∫u^(1/2)du
.....=(1/a)[(2/3)u^(3/2)] + C
.....=[2/(3a)]*(ax+b)^(3/2) + C
Or...
.....=[2*(ax+b)^(3/2)]/(3a) +C
They're both the same.
Hope that helps.
EDIT: Whoops, forgot the + C. :)
u = ax + b
du = adx ==> dx = du/a
∫(ax+b)^1/2 dx = ∫u^(1/2)(du)/a
.....=(1/a)∫u^(1/2)du
.....=(1/a)[(2/3)u^(3/2)] + C
.....=[2/(3a)]*(ax+b)^(3/2) + C
Or...
.....=[2*(ax+b)^(3/2)]/(3a) +C
They're both the same.
Hope that helps.
EDIT: Whoops, forgot the + C. :)
-
∫√(ax + b) dx
u = ax + b
du/a = dx
1/a*∫√u du
2/(3a) * u^(3/2) + C
2/(3a) * (ax + b)^(3/2) + C
u = ax + b
du/a = dx
1/a*∫√u du
2/(3a) * u^(3/2) + C
2/(3a) * (ax + b)^(3/2) + C
-
2/3a (ax+b)^3/2 + c