Guys please I need a step by step approach with simple clear explanations on how to solve these two problems.
Here is the link below (please if link is unclickable, copy to address bar):
http://desmond.imageshack.us/Himg30/scaled.php?server=30&filename=expine1.png&res=medium
Here is the link below (please if link is unclickable, copy to address bar):
http://desmond.imageshack.us/Himg30/scaled.php?server=30&filename=expine1.png&res=medium
-
3^(x+1)/27^(2x) < 1/3^(x²+5)
3^(x+1)/3^(3*2x) < 1/3^(x²+5)
3^(x+1)/3^(6x) < 1/3^(x²+5)
3^(x+1-6x) < 3^(-x²-5)
3^(1-5x) < 3^(-x²-5)
3>1
1-5x<-x²-5
x²-5x+6<0 => x∈(2,3)
4√2 < 1/√(8^x)
2²2^(½) < 1/√(2^(3x))
2^(2+½) < 1/(2^(3x/2))
2^(2+½) < 2^(-3x/2)
2>1
2+½<-3x/2 => x<-5/3
3^(x+1)/3^(3*2x) < 1/3^(x²+5)
3^(x+1)/3^(6x) < 1/3^(x²+5)
3^(x+1-6x) < 3^(-x²-5)
3^(1-5x) < 3^(-x²-5)
3>1
1-5x<-x²-5
x²-5x+6<0 => x∈(2,3)
4√2 < 1/√(8^x)
2²2^(½) < 1/√(2^(3x))
2^(2+½) < 1/(2^(3x/2))
2^(2+½) < 2^(-3x/2)
2>1
2+½<-3x/2 => x<-5/3