∫x²/√(4 - x²) dx
x = 2*sin(t)
dx = 2*cos(t) dt
∫(4*sin²(t))(2*cos(t) dt)/2*cos(t)
2*∫(1 - cos(2t)) dt
2[t - sin(t)*cos(t)] + C
2t - 2*sin(t)*cos(t) +C
2*arcsin(x/2) - 2*(x/2)(√(4 - x²))/2 + C
= 2*arcsin(x/2) - x√(4 - x²)/2 + C
x = 2*sin(t)
dx = 2*cos(t) dt
∫(4*sin²(t))(2*cos(t) dt)/2*cos(t)
2*∫(1 - cos(2t)) dt
2[t - sin(t)*cos(t)] + C
2t - 2*sin(t)*cos(t) +C
2*arcsin(x/2) - 2*(x/2)(√(4 - x²))/2 + C
= 2*arcsin(x/2) - x√(4 - x²)/2 + C