Hey all, need some help checking my solution for this problem:
y = (3x-4)/(2x+5)^4
y = (3x-4)/(2x+5)^4
-
I'll go into more detail..
y = (3x-4)/(2x+5)^4
when using logs, division switches to subtraction
ln y = ln (3x-4) - ln (2x+5)^4
Also when using logs the exponent can go in front of the log and be multiplied by it.
ln y = ln (3x-4) - 4*ln (2x+5)
Now when differentiating a natural log, use following formula. lnx ----> 1/x * derivative of x.
y'/y = 1 / (3x-4) *3 - 4*(1/(2x+5))*2
Just make it look better....
y'/y = 3/(3x-4) - 8/(2x+5)
Multiply y over and resubstitute the y back in (original equation).
y' = (3x-4)/(2x+5)^4 [ 3/(3x-4) - 8/(2x+5)]
I would really suggest leaving it at that.
---------------------------------------…
It's not
4*(1/(2x+5)^2
it is
4*(1/(2x+5)) * 2
Notice the multiplication, it is not an exponent. So it is actually 4*2*1 which is 8. Hope it helps a little.
y = (3x-4)/(2x+5)^4
when using logs, division switches to subtraction
ln y = ln (3x-4) - ln (2x+5)^4
Also when using logs the exponent can go in front of the log and be multiplied by it.
ln y = ln (3x-4) - 4*ln (2x+5)
Now when differentiating a natural log, use following formula. lnx ----> 1/x * derivative of x.
y'/y = 1 / (3x-4) *3 - 4*(1/(2x+5))*2
Just make it look better....
y'/y = 3/(3x-4) - 8/(2x+5)
Multiply y over and resubstitute the y back in (original equation).
y' = (3x-4)/(2x+5)^4 [ 3/(3x-4) - 8/(2x+5)]
I would really suggest leaving it at that.
---------------------------------------…
It's not
4*(1/(2x+5)^2
it is
4*(1/(2x+5)) * 2
Notice the multiplication, it is not an exponent. So it is actually 4*2*1 which is 8. Hope it helps a little.
-
y = (3x-4)/(2x+5)^4
ln y = ln(3x - 4) - 4ln(2x + 5)
y'/y = 3/(3x - 4) - 8/(2x + 5)
y' = (3x-4)/(2x+5)^4 [3/(3x - 4) - 8/(2x + 5)]
--------------------
ln(x)^y = y ln(x)
Hence ln(2x + 5)^4 = 4ln(2x + 5)
Use chain rule derivative of 4ln(2x + 5) = 4/(2x + 5) * 2 = 8/(2x + 5). That is where the 8 comes from.
ln y = ln(3x - 4) - 4ln(2x + 5)
y'/y = 3/(3x - 4) - 8/(2x + 5)
y' = (3x-4)/(2x+5)^4 [3/(3x - 4) - 8/(2x + 5)]
--------------------
ln(x)^y = y ln(x)
Hence ln(2x + 5)^4 = 4ln(2x + 5)
Use chain rule derivative of 4ln(2x + 5) = 4/(2x + 5) * 2 = 8/(2x + 5). That is where the 8 comes from.