I have my differential equation down to e^y = 0.5e^(2x) + C where C is a constant, and I need to solve for y.
How do I go about it??? Thanks :)
How do I go about it??? Thanks :)
-
e^y = 0.5 e^(2x) + c
. . . take the natural log of each side
ln(e) * y = ln(0.5 e^(2x) + c)
. . . ln(e) = 1
y = ln( 0.5 e^(2x) + c )
. . . take the natural log of each side
ln(e) * y = ln(0.5 e^(2x) + c)
. . . ln(e) = 1
y = ln( 0.5 e^(2x) + c )
-
Just take the natural log of both sides!
ln(e^y)= ln(0.5e^(2x)+C)
y=ln(0.5e^(2x)+C)
ln(e^y)= ln(0.5e^(2x)+C)
y=ln(0.5e^(2x)+C)
-
e^y = 0.5e^(2x) + C
take ln of both sides
=> y = ln(0.5e^2x + C)
take ln of both sides
=> y = ln(0.5e^2x + C)