I have this question, y' - x = xe^y
So far I've integrated both sides and got it down to the form ln|e^y| - ln|e^y+1| = 0.5x^2 + C
Which I simplified to
(e^y)/(e^y+1) = Ce^0.5x^2
I think there must be something wrong.. Can someone show me the steps on how to get there? Thanks!
So far I've integrated both sides and got it down to the form ln|e^y| - ln|e^y+1| = 0.5x^2 + C
Which I simplified to
(e^y)/(e^y+1) = Ce^0.5x^2
I think there must be something wrong.. Can someone show me the steps on how to get there? Thanks!
-
e^y / (1 + e^y) = Ce^((1/2) * x^2) <==== long division
. . . . . 1
. . . . . _____
e^y + 1I e^y
. . . . .-
. . . . . .e^y + 1
. . . . . _______
. . . . . 0 - 1
1 - 1/e^y
1 - 1/e^y = Ce^((1/2) * x^2)
1 - Ce^((1/2) * x^2) = 1/e^y
e^y = 1/(1 - Ce^((1/2) * x^2))
ln( e^y ) = ln( 1 / (Ce^((1/2) * x^2) )
y = ln( 1 ) - ln(Ce^((1/2) * x^2))
y = 0 - ln(Ce^((1/2) * x^2))
y = - ln(Ce^((1/2) * x^2))
. . . . . 1
. . . . . _____
e^y + 1I e^y
. . . . .-
. . . . . .e^y + 1
. . . . . _______
. . . . . 0 - 1
1 - 1/e^y
1 - 1/e^y = Ce^((1/2) * x^2)
1 - Ce^((1/2) * x^2) = 1/e^y
e^y = 1/(1 - Ce^((1/2) * x^2))
ln( e^y ) = ln( 1 / (Ce^((1/2) * x^2) )
y = ln( 1 ) - ln(Ce^((1/2) * x^2))
y = 0 - ln(Ce^((1/2) * x^2))
y = - ln(Ce^((1/2) * x^2))
-
you are fine....need to solve for e^y...let w = e^y and do the algebra , then y = ln w
{ ln | Ce^(x² / 2 ) / [ 1 - C e^(x² / 2 ) ] | }
{ ln | Ce^(x² / 2 ) / [ 1 - C e^(x² / 2 ) ] | }