Help me solver this please!
(tan(x))/(1+cos(x))+(sin(x))/(1-cos(x)…
(tan(x))/(1+cos(x))+(sin(x))/(1-cos(x)…
-
tan(x)/(1+cos(x)) + sin(x)/(1-cos(x))
=> ( tan(x)(1-cos(x)) + sin(x)(1+cos(x)) ) / (1 - cos^2(x))
=> ( tan(x) - sin(x) + sin(x) + sin(x)cos(x) ) / sin^2(x)
=> ( tan(x) + sin(x)cos(x) ) / sin^2(x)
=> tan(x)/sin^2(x) + sin(x)cos(x)/sin^2(x)
=> 1 / (sin(x)cos(x)) + cos(x) / sin(x)
=> 2 / sin(2x) + 1 / tan(x)
You can go on forever with this. Depend upon where you want to stop.
=> ( tan(x)(1-cos(x)) + sin(x)(1+cos(x)) ) / (1 - cos^2(x))
=> ( tan(x) - sin(x) + sin(x) + sin(x)cos(x) ) / sin^2(x)
=> ( tan(x) + sin(x)cos(x) ) / sin^2(x)
=> tan(x)/sin^2(x) + sin(x)cos(x)/sin^2(x)
=> 1 / (sin(x)cos(x)) + cos(x) / sin(x)
=> 2 / sin(2x) + 1 / tan(x)
You can go on forever with this. Depend upon where you want to stop.
-
well finish the question?