A 5.00 A current runs through a 12 gauge copper wire (diameter 2.05 mm) and through a light bulb. Copper has 8.5*10^28 free electrons per cubic metre.
a) How many electrons pass through the light bulb each second?
b) What is the current density in the wire? (answer in A/m^2)
c) At what speed does a typical electron pass by any given point in the wire? (answer in m/s)
a) How many electrons pass through the light bulb each second?
b) What is the current density in the wire? (answer in A/m^2)
c) At what speed does a typical electron pass by any given point in the wire? (answer in m/s)
-
a) 5.0 A = 5.0 C/s
. Number of electrons in 5.0C = 5.0 / 1.60^-19 = 3.125^19
. 5.0 A ►= 3.125^19 electrons/s
b) A/m² = 5.0 / π(1.025^-3 m)² .. .. ►= 1.52^6 A/m²
c) Charge density (q/m³) = 8.50^28 e/m³ x 1.60^-19 = 1.36^10 C/m³
(q/m³)(m²)(m/s) = q/s (current i in C/s [A])
(m²) = Area
(m/s) = mean drift speed
(q/m³)(A)(v) = i
v = i.[(q/m³)A]ˉ¹
v = 5.0 [1.36^10 * π(1.025^-3 m)²]ˉ¹.. .. ►v = 1.10^-4 m/s
. Number of electrons in 5.0C = 5.0 / 1.60^-19 = 3.125^19
. 5.0 A ►= 3.125^19 electrons/s
b) A/m² = 5.0 / π(1.025^-3 m)² .. .. ►= 1.52^6 A/m²
c) Charge density (q/m³) = 8.50^28 e/m³ x 1.60^-19 = 1.36^10 C/m³
(q/m³)(m²)(m/s) = q/s (current i in C/s [A])
(m²) = Area
(m/s) = mean drift speed
(q/m³)(A)(v) = i
v = i.[(q/m³)A]ˉ¹
v = 5.0 [1.36^10 * π(1.025^-3 m)²]ˉ¹.. .. ►v = 1.10^-4 m/s
-
None. The electrons don't actually move