log3 (2x-1) + log3 (x=7) = 3
-
log_3 ((2x-1)*(x+7)) = 3
exponentiate both sides by 3:
(2x-1)(x+7) = 3^3
2x^2 - x + 14x - 7 = 27
2x^2 + 13x -34 = 0
2x^2 - 4x + 17x - 34 = 0
2x(x-2) + 17(x-2) = 0
(2x+17)(x-2) = 0
x-2 = 0
so x = 2
or
2x+17 = 0
so x = -17/2
x = 2, -17/2
exponentiate both sides by 3:
(2x-1)(x+7) = 3^3
2x^2 - x + 14x - 7 = 27
2x^2 + 13x -34 = 0
2x^2 - 4x + 17x - 34 = 0
2x(x-2) + 17(x-2) = 0
(2x+17)(x-2) = 0
x-2 = 0
so x = 2
or
2x+17 = 0
so x = -17/2
x = 2, -17/2