Lim x--->0+ [ ln(e^x-1)/ln(x) ]
Favorites|Homepage
Subscriptions | sitemap
HOME > > Lim x--->0+ [ ln(e^x-1)/ln(x) ]

Lim x--->0+ [ ln(e^x-1)/ln(x) ]

[From: ] [author: ] [Date: 13-01-29] [Hit: ]
= lim(x→0+) x/(1 - e^(-x)), multiplying num. and denom.= lim(x→0+) 1/e^(-x),= 1.I hope this helps!......
How to simplify
Lim x--->0+ [ ln(e^x-1)/ln(x) ]

-
Use L'Hopital's Rule.

lim(x→0+) ln(e^x - 1)/ln x; this is of the form ∞/∞
= lim(x→0+) [e^x/(e^x - 1)] / (1/x), by L'Hopital's Rule
= lim(x→0+) xe^x/(e^x - 1)
= lim(x→0+) x/(1 - e^(-x)), multiplying num. and denom. by e^(-x) [now of the form 0/0]
= lim(x→0+) 1/e^(-x), by L'Hopital's Rule
= 1/1
= 1.

I hope this helps!
1
keywords: Lim,ln,gt,Lim x--->0+ [ ln(e^x-1)/ln(x) ]
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .