Prove that sec x = [2(cosxsin2x - sinxcos2x)] / sin2x
Favorites|Homepage
Subscriptions | sitemap
HOME > > Prove that sec x = [2(cosxsin2x - sinxcos2x)] / sin2x

Prove that sec x = [2(cosxsin2x - sinxcos2x)] / sin2x

[From: ] [author: ] [Date: 12-11-19] [Hit: ]
......
can someone please show me the steps to making LEFT SIDE = RIGHT SIDE?

i can't seen to solve this equation for the life of me :(

-
working with left side notice we have double angles here so we need to use double angle identities:
sin2x = 2sinxcosx
cos2x = cos²x-sin²x

[2(cosxsin2x - sinxcos2x)] / sin2x

[2cosx(2sinxcosx) - 2sinx(cos²x-sin²x)]/2sinxcosx

[4cos²xsinx - 2sinxcos²x+2sin³x]/2sinxcosx

[2sinx(2cos²x - cos²x + sin²x)]/2sinxcosx

(cos²x + sin²x)/cosx

1/cosx

secx
1
keywords: that,sin,cosxsin,sec,Prove,sinxcos,Prove that sec x = [2(cosxsin2x - sinxcos2x)] / sin2x
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .