Can someone please help me through this?
[csc(x)] / [cos(x)] - [cos(x)] / [sin(x)] = tan(x)
[csc(x)] / [cos(x)] - [cos(x)] / [sin(x)] = tan(x)
-
[csc(x)] / [cos(x)] - [cos(x)] / [sin(x)]
---csc(x) = 1 / [sin(x)], so [csc(x)] / [cos(x)] = 1 / [sin(x)cos(x)]
1 / [sin(x)cos(x)] - [cos(x)] / [sin(x)]
---multiply top and bottom of [cos(x)] / [sin(x)] by cos(x)
1 / [sin(x)cos(x)] - ([cos(x)]^2) / [sin(x)cos(x)]
(1 - [cos(x)]^2) / [sin(x)cos(x)]
---[sin(x)]^2 + [cos(x)]^2 = 1, so 1 - [cos(x)]^2 = [sin(x)]^2
[sin(x)]^2 / [sin(x)cos(x)]
[sin(x)] / [cos(x)]
--- tan(x) = [sin(x)] / [cos(x)]
tan(x)
---csc(x) = 1 / [sin(x)], so [csc(x)] / [cos(x)] = 1 / [sin(x)cos(x)]
1 / [sin(x)cos(x)] - [cos(x)] / [sin(x)]
---multiply top and bottom of [cos(x)] / [sin(x)] by cos(x)
1 / [sin(x)cos(x)] - ([cos(x)]^2) / [sin(x)cos(x)]
(1 - [cos(x)]^2) / [sin(x)cos(x)]
---[sin(x)]^2 + [cos(x)]^2 = 1, so 1 - [cos(x)]^2 = [sin(x)]^2
[sin(x)]^2 / [sin(x)cos(x)]
[sin(x)] / [cos(x)]
--- tan(x) = [sin(x)] / [cos(x)]
tan(x)