If you answer i pick best answer I promise
(3^x)/4^(x-1)=2
Please tell me how to solve this.
Visual of this problem: http://www.mathway.com/math_image.aspx?p=SMB02FSMB033SMB02ESMB03xSMB02eSMB03SMB104SMB02ESMB03x-1SMB02eSMB03SMB02fSMB03SMB012?p=57?p=42
(3^x)/4^(x-1)=2
Please tell me how to solve this.
Visual of this problem: http://www.mathway.com/math_image.aspx?p=SMB02FSMB033SMB02ESMB03xSMB02eSMB03SMB104SMB02ESMB03x-1SMB02eSMB03SMB02fSMB03SMB012?p=57?p=42
-
3^x = 2*4^(x - 1)
x*ln(3) = ln(2) + x*ln(4) - ln(4)
x*ln(3) - x*ln(4) = ln(2) - ln(4)
x = (ln(2.) - ln(4.))/(ln(3.) - ln(4.))
x = 2.409420843
x*ln(3) = ln(2) + x*ln(4) - ln(4)
x*ln(3) - x*ln(4) = ln(2) - ln(4)
x = (ln(2.) - ln(4.))/(ln(3.) - ln(4.))
x = 2.409420843
-
3^x/(4^x - 1) = 2
3^x/(4^x/4) = 2 => (3/4)^x = 1/2 => x = ln(1/2)/ln(3/4)
3^x/(4^x/4) = 2 => (3/4)^x = 1/2 => x = ln(1/2)/ln(3/4)