Let f be the function defined by f(x)=(x-4)/((x^2)-16).
Favorites|Homepage
Subscriptions | sitemap
HOME > > Let f be the function defined by f(x)=(x-4)/((x^2)-16).

Let f be the function defined by f(x)=(x-4)/((x^2)-16).

[From: ] [author: ] [Date: 12-07-04] [Hit: ]
3.999 and 4.1,4.01,4.......
By computing the values of f at 3.9,3.99,3.999 and 4.1,4.01,4.001 estimate the value of lim x->4 f(x).

-
3.9,3.99,3.999, 4.1,4.01,4.001
[10/79,100/799,1000/7999,10/81,100/801…

lim f(x) ~ 1/8
x->4

you can get it factoring the denominator
(x - 4)/(x^2 - 16) = (x - 4)/((x - 4)(x+4))
you cancel (x - 4) and get 1/(x+4)

lim 1/(x+4) = 1/(4+4) = 1/8
x->4
1
keywords: defined,function,the,be,by,16,Let,Let f be the function defined by f(x)=(x-4)/((x^2)-16).
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .